Pre-Course

Pre-Course Outline

- 1. Pre-assessment
 - a. Pre-Assessment 20 minutes

2. Pre-Course

- a. Disclaimer
- b. How to Use the Participant Guide
 - i. Purpose of the Course
 - ii. Approach of the Course
- c. Tables of Contents
- d. Table of Figures

 M1 Learning Objectives BEBs vs. ICE vs. Hybrid Buses Compare and contrast differences and similarities between BEBs and other current bus types Explain the general advantages and disadvantages of each propulsion type Details of BEB Systems and Components Describe the process of power flow on a BEB Identify the components and subsystems that make up a standard BEB Describe the primary function(s) of each subsystem and component in the overall process of PEP aparation 		
 1-1 BEBs vs. ICE vs. Hybrid Buses Compare and contrast differences and similarities between BEBs and other current bus types Explain the general advantages and disadvantages of each propulsion type 1-2 Details of BEB Systems and Components Describe the process of power flow on a BEB Identify the components and subsystems that make up a standard BEB Describe the primary function(s) of each subsystem and component in the overall process of BEB apparation 		
 Compare and contrast differences and similarities between BEBs and other current bus types Explain the general advantages and disadvantages of each propulsion type Details of BEB Systems and Components Describe the process of power flow on a BEB Identify the components and subsystems that make up a standard BEB Describe the primary function(s) of each subsystem and component in the overall process of PEP aparation 		
 1-2 Details of BEB Systems and Components 1) Describe the process of power flow on a BEB 2) Identify the components and subsystems that make up a standard BEB 3) Describe the primary function(s) of each subsystem and component in the overall process 		
 Describe the process of power flow on a BEB Identify the components and subsystems that make up a standard BEB Describe the primary function(s) of each subsystem and component in the overall process of REP operation 		
1-3 BEB High-Voltage, System Cooling, and Data Communications		
 Identify the areas of high voltage risk associated with each subsystem of a BEB List the BEB subsystems that utilize a coolant loop Explain why various subsystems utilize a coolant loop Describe the data communication protocols on a BEB 		
1-4 Battery Management & Cooling		
 Describe ESS/battery makeup and how to identify them List the battery safety systems and devices Describe the purpose and operation of Battery Thermal Management System [BTMS] 		
1-5 Maintenance		
 Identify the purpose of preventive maintenance List the typical tasks and maintenance intervals for BEBs Differentiate between maintenance tasks on BEBs vs. traditional buses Identify typical diagnostic equipment and their functions 		
1-6 Summary		
M1 Course Outline		

1. Overview

- a. Brief History of Electric Vehicles
- b. What is a Battery Electric Bus?
- c. Terminology

2. BEBs vs. ICE vs Hybrid Buses

- a. Vehicle Characteristics & Operations
- b. Standards & Charging
 - i. Plug-In Charging
 - ii. Overhead Charging
 - iii. Inductive Charging
 - iv. LEARNING EXERCISE 1A Compare and contrast bus types

3. Details of BEB Systems and Components

- c. Vehicle-Specific Electrical Systems
- d. Major Components
 - i. External (Manual) Charge Port
 - ii. Energy Storage System [ESS]
 - iii. High Voltage Junction Box [HVJB]
 - iv. Inverters
 - v. DC/DC Converter
 - vi. Electronic Controllers & Contactors/Electrical Switching Devices
 - vii. High Voltage Cables
 - viii. Electric Drive Accessories/Subsystems (those that utilize HV energy)
 - ix. Traction Motors
- e. LEARNING EXERCISE 1B Match components and fill out table for functions [should be done at bus when possible] can be done in conjunction with Learning Exercises 1C and 1D
- f. Theory of Operation: Power Flow
 - i. Inverters & Traction Motors for Power Flow
 - ii. Overall Power Flow
 - iii. Regenerative Braking
- g. LEARNING EXERCISE 1C Fill in the Bank to describe Power Flow activity [can be conducted at bus with 1B]

4. BEB High Voltage Identification & Risks, System Cooling and Data Communications

- h. High Voltage Awareness & Identification
 - i. LEARNING EXERCISE 1D Identify areas on the bus of HIGH, MEDIUM AND LOW voltage risk [should be done at bus when possible]; have instructor point out areas on actual bus follow a checklist
- i. Temperature/Cooling Systems and Management
 - i. Battery Coolant Loop
 - ii. Power Electronics Coolant Loop
 - iii. Expansion Tanks
 - iv. Coolant Temp Sensors
 - v. Coolant Loop Filters
- j. Data Communications Systems Basics
 - i. CAN System for Communication
 - ii. Multiplexing System [MUX]
 - iii. MUX Theory of Operation

5. Battery Management & Cooling

- k. Basics on the High Voltage Battery [ESS] Construction
 - i. High Voltage Battery Configuration

- ii. Handling High Voltage Batteries
- iii. Battery Management Controller (BMC)
- iv. LEARNING EXERCISE 1E Fill in the blank for theory of MUX operation activity
- I. ESS and Batteries
 - i. ESS Battery Chemistry
 - ii. High Voltage Isolation Safety & Detection
 - iii. High Voltage Interlock Loop [HVIL] & Driver Display
- m. ESS Thermal Management

6. Preventive Maintenance

- n. PM Schedule Intervals
 - i. Intervals
- o. Diagnostic Troubleshooting
 - i. Diagnostic Software
 - ii. Diagnostic Tools
 - iii. LEARNING EXERCISE 1F Match the correct term/location for ESS construction

Break for Lunch - instructor and participants will determine prior

7. Summary

Additional Notes, Resources or Hands-on learning:

- Optional Walkthrough of PM inspection process and procedures
 - Identify what to look for under bus, rooftop, street or curb side

Module 2 – Electrical Safety & Personal Protective Equipment

M2 Learning Objectives

2-1 Overview

- 2-2 Safety Considerations
 - 1) Recall the formula for calculating voltage
 - 2) Define high voltage risk and shop safety conditions
 - 3) Recall the SAE standards pertaining to BEBs
 - 4) Identify primary built-in safety features and recall their function
- 2-3 Personal Protective Equipment [PPE]
 - 1) Identify typical PPE involved with BEB maintenance under NFPA70E Category ratings
 - 2) Recall the primary functions of each PPE introduced
 - 3) Recall the procedures for testing and inspecting HV gloves
- 2-4 Safety & Testing Equipment
 - 1) Explain the purpose of the appropriate safety and testing equipment
 - 2) Identify when to use the appropriate safety and testing equipment
- 2-5 De-Energizing or LOTO [Lock-Out/Tag-Out] of BEB Electrical Systems
 - 1) Recall the proper de-energization procedure for an 800-volt Proterra bus
 - 2) Demonstrate the ability to perform a LOTO on an 800-volt Proterra bus (only applicable to in-person training with qualified personnel)
 - 3) Recall the proper de-energization procedure for a New Flyer bus
 - 4) Demonstrate the ability to perform a LOTO on a New Flyer bus (only applicable to inperson training with qualified personnel)

2-6 Summary	
M2 Course Outline	
1. Overview	
2. Fundamentals & Safety Considerations	
a. Electrical Fundamentals & Laws	
i. Ohm's Law	
II. Watt's Law	
III. Electrical Schematic Basics	. I. F
IV. LEARNING EXERCISE 2A – Use the Ohm's Law formula to calcula	ate voltage [can
Inis de done with voltmeter at busj	
b. Salety Considerations, Hazarus and Nisks	
ii Effects of High Voltage on the Human Body	
iii Safety Considerations	
iv. High Voltage Safety Hazards and Risks	
1. Increased risks of electrical shock hazards	
2. Arc Flashing	
a. HV & Arc Flash Safety	
b. Limits of Approach	
c. Arc Flash Warning Labels	
3. Thermal Runaway Event	
4. Limits of Approach	
5. Arc Flash Warning Labels	
v. Additional Safety Hazards and Concerns	
vi. LEARNING EXERCISE 2B – Use the space to identify and recall keeping	ey safety
considerations for the 3 primary sources of safety hazards and risk	s – Ask the
participants how they would identify and assess the risks	
c. Integral BEB Safety Features	
i. Manual Service Disconnect [MSD]	
ii. High voltage interlock Loop [HviL]	
iv Passive Propagation Resistance	
d Shon Safety Practices	
i Lock-out/Tag-out	
ii. First-Aid & CPR	
1. Releasing victim from HV	
iii. LEARNING EXERCISE 2C - Use the space to identify and recall th	e primary
functions of the integral BEB safety features reviewed	
iv. Shutting Down HV Quickly	
v. Emergency Response Procedures	
END OF DAY 1	
3. Personal Protective Equipment [PPE]	
a. Learning Exercise 2D- have students put on PPE; Instructors will need at	east 2 sets of
HPE (one in best conditions, one with known detect for students to identify	when putting on)
D. INFFA FFE Galegoly Railings	
d Electrical Hazard-Rated Safety Shoes	
e HV Glove Inspection & Testing	
4. Safety & Testing Equipment	

a. Meters & Digital Multimeter

- i. Verify Test Verify
 - ii. Taking measurements using a meter
 - 1. Learning exercise 2E– have instructor with meter and known voltage source present; have instructor use meter to perform "test verify test" with students and allow time for students to take their own measurements on a separate electrical equipment
- b. Current Probe [1000 V Category III/600V Category IV]
- c. Insulated Rescue Hook
- d. Fire Extinguisher
- e. Phase Rotation Meter
- f. Safety Barricade
- g. Insulated Tools

i. HV insulated Mat

Break for Lunch – instructor and participants will determine prior - Head to bus location after lunch

5. De-energizing [Lock-out/Tag-out] of BEB Electrical Systems

- a. Proterra Catalyst Demonstration
 - i. LEARNING EXERCISE 2F -
 - 1. At vehicle LOTO demonstration with qualified agency technician
 - 2. If # 1 is not an option, use the video review of LOTO demo and answering related questions
- b. New Flyer Charge Demonstration
 - i. LEARNING EXERCISE 2G
 - 1. At vehicle LOTO demonstration with qualified agency technician
 - 2. If # 1 is not an option, use the video review of LOTO demo and answering related questions

6. Summary

Additional Notes, Resources or Hands-on learning:

- Additional resource/exercise Video review of glove inspection and answering questions in Guide
- Additional resource video of results of thermal runaway event <u>https://vimeo.com/852691674/984974430a</u>

Module 3 – Battery Charging Technologies

M3 Learning Objectives

3-1 Overview

- 3-2 Charging Overview
 - 1) Describe the three primary charging methods for BEBs
 - 2) Calculate an anticipated charge time for each method of charging
- 3-3 Electric Vehicle Charging Standards
 - 1) Explain the purpose of standards SAE J1772, SAE J3105 and SAE J2954-2
- 3-4 Details of Charging Technologies
 - 1) Explain the general process of how a charger and battery communicate
 - 2) Identify the purpose of a switchgear
 - 3) Define smart charging

BEB Familiarization Course Learning Objectives and Course Outline

- 3-5 Charging Equipment Maintenance & Safety Precautions
 - 1) Describe safety precautions for charging equipment
- 3-6 Summary

M3 Course Outline

1. Overview

- 2. Charging Overview
 - a. Various Charging Options
 - i. Transit Bus Charger Suppliers
 - ii. Charging Options
 - b. Charging Times
 - c. LEARNING EXERCISE 3A Calculate the approximate charging time for each scenario

3. Electric Vehicle Charging Standards

- a. Standard J772 (Plug-In Charging)
- b. Standard J3105 (Overhead Charging)
- c. Standard J2954-2 (Inductive Charging)
- d. Additional Exercise 3B After students go through the content for communication sequence, go to bus and ask students to follow the full battery charger connect-disconnect sequence (checklist)

4. Details of Charging Technologies

- a. Battery and Charger Communications
- b. Transformers and Switchgears
- c. Emerging Charging Technology
 - i. Smart Charging
 - ii. Simultaneous vs Sequential Charging
 - iii. Other Emerging Charging Technologies & Opportunities
 - iv. LEARNING EXERCISE 3C Fill in the blanks for the process of how a charger and battery communication sequence

5. Brief Overview of Charging Maintenance & Safety Precautions

a. Charging Equipment Maintenance& Safety Precautions

6. Summary

END OF DAY 2

Additional Notes, Resources or Hands-on learning:

Post-Course

Post-Course Outline

- 1. Post-assessment
 - a. Post-Assessment 45 to 60 minutes
- 2. Have participants fill out the Participant course survey
- 3. When able, fill out the Instructor survey
- 4. When able, fill out the Instructor edit log Word or Excel version(s)